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Abstract 
Sophisticated numerical models play an important role in forecasting beach erosion at 
high risk sites along NSW coastlines. These models contain free parameters that 
require calibration to available field data and little guidance (beyond the adoption of the 
default values provided) is presently available to inform the selection of best-fit 
parameter values. In practice, the means of calibrating erosion models through the 
optimisation of these parameters often lacks a sufficient consideration of parameter 
compensation for model error, the impacts of parameter interdependence and 
parameter-induced model uncertainty. The Generalised Likelihood Uncertainty 
Estimation (GLUE) method has been previously employed in the field of hydrology and 
has proven to be a conceptually simple and efficient method to evaluate model 
sensitivity to parameters, optimum calibrated parameter values and parameter 
uncertainty. This paper describes the application of the GLUE method to the XBeach 
storm erosion model, using data from a site in Italy where the XBeach model has been 
previously applied without such a rigorous calibration method. The results presented 
demonstrate the more generic effectiveness of GLUE in enhancing the performance of 
coastal numerical models. The sensitivity of XBeach to each trailed free parameter is 
determined in a rigorous and transparent manner, and parameter-induced uncertainty 
bounds are obtained. This enables the modeller to better quantify model skill in 
predicting observed and potential future erosion. 

Introduction 
A number of sites (‘hotspots’) have been identified along the NSW coastline which are 
susceptible to coastal erosion events and the ability to forecast the potential impact of 
storm events at these sites would greatly improve the effectiveness coastal protection 
and emergency response (NSW Office of Environment and Heritage, 2003). To assist 
coastal managers in the identification of marine storm risk, a number of international 
projects (Ciavola et al., 2011; Stockdon et al., 2012) have incorporated coastal erosion 
models into on-line tools which provide real-time beach erosion forecasts. These 
forecasts must be accompanied by information on prediction uncertainty to allow 
decision makers to act with confidence, especially when rapid forecasting requires the 
use of imperfect input data (Plant and Holland, 2011; Kinsela and Hanslow, 2013). To 
give accurate representations of uncertainty bounds, modellers must be able to reliably 
calibrate models, recognise model limitations and identify areas in which the physics of 
the real-world system are not adequately resolved. 

Several studies have attempted to examine the sources of model uncertainty present in 
coastal engineering forecasts. Errors propagating through morphological response 
forecasts have been examined (Baart et al., 2011), with a focus on quantifying 
uncertainty in input data. A large body of work to-date on the quantification of 
uncertainty bounds for numerical modelling used in coastal engineering has focused on 
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providing probabilistic estimates of storm erosion (Callaghan et al., 2008; Pender and 
Karunarathna, 2013). These studies often incorporate Monte Carlo sampling of storm 
characteristics combined with bootstrapping methods to produce estimates of storm 
erosion demand spanning a range of time scales (Callaghan et al., 2013; Li et al., 
2014). Importantly, such an approach assumes that uncertainties stemming from the 
model itself are effectively negligible, once the initial calibration process has been 
completed (Li et al., 2013). 

It is important in uncertainty estimation to be aware of model structural errors and limit 
these to ensure that the model is performing optimally. As such, calibration of model 
free parameters is vital before quantifying model performance. In reality, this crucial 
calibration process is often approached in a somewhat ‘ad hoc’ fashion, often due to 
the complex and non-linear interaction of parameters. Algorithms have been applied to 
simpler models with fewer free parameters, searching through the parameter space to 
find optimal parameter values by minimizing discrepancies between model results and 
observational data (Plant, 2004; Ruessink et al., 2007; Dubarbier et al., 2015).  

Models like XBeach (eXtreme Beach behaviour model) have tended to be analysed in 
a less rigorous way due to the large number of free model parameters and longer run 
times. XBeach, a process-based model, is the current `state-of-the-art' model used to 
predict changes in coastal morphology arising due to storms (Roelvink et al., 2009). 
Most documented calibrations of XBeach have used modeller experience and one-at-a-
time variation to determine sensitive parameters, and have varied these selected 
parameters by only a few values in order to determine the ‘optimal’ parameter set using 
a skill measure (Roelvink et al., 2009; Harley et al., 2011; Splinter and Palmsten, 2012; 
Callaghan et al., 2013; Pender and Karunarathna, 2013; Stockdon et al., 2014). A brief 
examination of these 6 example studies reveals that in each a different parameter 
subset was found to be sensitive. Few studies (Vousdoukas et al., 2012) have 
rigorously trailed a broad range of XBeach parameter combinations and values, and no 
generalised techniques have been applied to examine the impact of model uncertainty 
due to parameter selection. 

The Generalised Likelihood Uncertainty Estimation (GLUE) method (formally presented 
in (Beven and Binley, 1992)) has the potential to address a number of the 
shortcomings identified above. It is a Monte Carlo based method that provides 
parameter sensitivity information, reliable parameter values and uncertainty estimation. 
The GLUE method is based upon the concept of ‘equifinality’, the idea that multiple 
parameter combinations may produce model runs equally skilful as estimators of 
observed morphological change in the system (Freer et al., 1996; Beven, 2006). This 
can be due to the complex and often non-linear interaction between model parameters 
(Yates et al., 2009), over-parameterization without sufficient observational data to 
inform parameter selection (Beven, 2006) and, errors in the observational data and 
model structure. These errors can be termed ‘epistemic’, referring to a lack of 
knowledge of the system within the model (Efstratiadis and Koutsoyiannis, 2010; 
Beven and Binley, 2014). For instance, the complex three-dimensional morphology 
may not be captured in the two-dimensional beach profile surveys, the observational 
data may not be collected immediately before/after the event allowing sediment 
transport to occur outside of the model simulation time, or the model may be 
formulated in such a way that overly simplifies the physics in the system (Dubarbier et 
al., 2015). Recognizing this, the modeller’s focus is then shifted to finding the most 
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reliable parameter combination across studied sites and storms, whilst also assessing 
the validity of the model in truly representing the physics responsible for the observed 
change (Candela et al., 2005; Beven and Binley, 2014). 

While the GLUE method has been employed extensively in the field of hydrology 
(Beven and Freer, 2001; Brazier et al., 2000; Candela et al., 2005; Freer et al., 1996; 
He et al., 2010; Jin et al., 2010), its application to coastal numerical model studies has 
so far been limited (Ruessink, 2005; Ruessink, 2006). 

The purpose of this work is to present a suggested methodology for the application of 
the GLUE method to deterministic coastal numerical models, allowing coastal 
engineers to rigorously calibrate models and identify the sources and magnitudes of 
errors in the modelling process. The first section outlines this methodology and the 
second section presents an application of the GLUE method to a storm event using the 
model XBeach. 

GLUE Methodology 

Parameter ranges and sampling 
A basic GLUE analysis begins with the assumption that all combinations of parameter 
values have an equal likelihood of producing the most reliable predictions, given a set 
of observations (Beven and Binley, 1992). Uniform Monte Carlo sampling of the 
parameter space is then performed and the model run to determine the skill of each 
individual parameter set. Values are subsequently assigned reflecting the likelihood of 
each parameter set as the best model realization simulating the observed event. These 
likelihood values assigned to each sampled parameter value are then used to form 
parameter posterior distributions which, despite being linked to the entire parameter set 
and therefore incorporating some noise (Freer et al., 1996; Candela et al., 2005), show 
parameter values generally resulting in skilful model realizations. 

The first step in applying the GLUE methodology is to define the model parameters of 
interest. Given that the number of Monte Carlo runs required to conduct a GLUE 
analysis is dependent on the number of parameters included, careful attention must be 
paid in ensuring that appropriate tuning parameters are chosen. It is appropriate at this 
initial stage to combine the experience of the modeller and simple one-at-a-time 
parameter sensitivity testing (Morris, 1991). Alternatively, a GLUE analysis with a 
restricted number of Monte Carlo runs can also be undertaken to estimate the most 
sensitive parameters. 

It is important that a wide range of values are sampled for each selected parameter in 
order to adequately define the parameter posterior distributions. Where modeller 
knowledge exists of the physical constraints or likely values a parameter should have, 
the range should be restricted accordingly. For example, the breaking parameter 
(gamma) in XBeach should be within the physically reasonable range of 0.3 to 0.6 
(Short Ed., 1999). While these estimates can be used to narrow the range significantly, 
parameters must still be treated as free in order to investigate model performance. 
Model parameters can compensate for the presence of epistemic errors and therefore 
cannot be regarded as the equivalent of their physical counterparts (Ruessink et al., 
2007; Hsu et al., 2006; Beven, 2006). Due to this effect, allowing parameters to deviate 
from ‘default’ and measured values provides the modeller information regarding 
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processes in the model which may be missing or describe the system in an incomplete 
manner. 

Likelihood measure 
The likelihood measure in the GLUE method serves to rank the individual model runs 
as potential simulators of the system and is typically based on a measure of skill. A key 
advantage of the GLUE method lies in the fact that it does not require a formal and 
detailed knowledge of the sources and magnitudes of errors present in the model. The 
errors are treated implicitly in GLUE analyses and in this way we expect that if a model 
consistently underestimates beach erosion for observed data, it will continue to display 
similar errors during forecasting (Beven and Binley, 2014). Therefore the likelihood 
measure can be informal and simple, the only requirements being that it must have a 
value of zero when the model runs are deemed ‘non-behavioural’ and increase 
monotonically as the skill of the model in replicating the observed data increases 
(Beven and Binley, 1992). 

Determining if a model run is ‘non-behavioural’ requires the modeller to impose a 
behavioural threshold. Parameter sets which do not meet the behavioural threshold 
criteria are deemed to have no skill in modelling the observed beach response and are 
therefore ‘non-behavioural’. The criteria chosen will change depending on the purpose 
intended for the model and this is left to the modeller’s discretion.  

Within the context of coastal morphological modelling, a Brier Skill Score (BSS) is a 
suitable definition of model skill for GLUE and will be used here. The BSS compares 
model performance to a baseline profile (most commonly the initial profile) with a value 
of 1 representing perfect agreement of the model predictions with observational data 
and a value of 0 reflecting the performance of the baseline profile (Sutherland et al., 
2004). It can be presented as: 
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where 0z  is a series of bed elevations observed post-storm, mz  the final modelled bed 

levels and bz  the selected baseline series of bed elevations. The BSS is particularly 
useful as meaningful thresholds have already been established (Sutherland et al., 
2004). For example, for initially assessing parameter posterior distributions a threshold 
of 0BSS >  may be used, indicating that the model has provided a better estimate of 
post-storm beach morphology than the baseline (i.e. initial) bed elevation. However, if 
the modeller wished to keep only ‘good’ estimates, a threshold of 0.2BSS >  could be 
used, following the guidance provided by Sutherland et al. (2004). If a model run does 
not achieve a BSS greater than the pre-determined threshold value, the likelihood for 
that run is set to 0. 

The likelihood measure (rescaled to sum to 1) is then simply defined as: 
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where n  is the total number of behavioural model runs and the likelihood is calculated 
from the skill of each individual behavioural model run ( iBSS ). This likelihood measure 
applies provided the BSS threshold is 0 or greater. 

Many more likelihood measures with much greater complexity can be found in the 
literature (Freer et al., 1996; Beven and Freer, 2001; He et al., 2010), however the 
simplistic measures detailed above are able to give adequate definition to the 
parameter posterior distributions and therefore provide reliable measures with which to 
differentiate between the skill of each parameter set. 

Application of GLUE 

Data and model setup 

Study site 
This section details an example application of the GLUE methodology using data from 
a site located along the Emilia-Romagna coastline (Northern Italy) collected before and 
after the 2012 ‘Halloween’ storm. The Lido di Classe site is situated on the Adriatic Sea 
with a semidiurnal and micro-tidal regime (neap tidal range of ±0.15m, spring tidal 
range of ±0.4m), and low wave energy conditions dominating (Harley et al., 2015). 
When the area is impacted by SE (‘Sirocco’) winds, storm surge elevation can be twice 
that of the maximum tide (Armaroli et al., 2012). The storm surge risk coupled with the 
relatively low-lying dune crests (with elevations at the site ranging between 2.1m and 
3.9m above mean sea level), leaves the dunes at this site vulnerable to overtopping. 
For the purpose of illustration, the GLUE method is applied at one profile line located at 
the Northern end of the site (Profile ‘classe02’ (Harley et al., 2015)) which was 
surveyed every two months using RTK-GPS. 

Table 1. A brief description of the trialled XBeach parameters and the sampled 
ranges for the ‘Halloween’ dataset. 

Parameter Description Default Sampled 
Range 

eps threshold depth for differentiating between wet and 
dry cells 0.005 0.001-

0.1 

facua the degree to which wave skewness and asymmetry 
influence the direction of sediment transport 0.1 0-1 

gamma the breaker index in the wave dissipation model 0.55 0.4-0.9 

gammax the maximum allowed wave height to water depth 
ratio 2 0.4-5 

smax maximum Shields parameter value before sheet flow 
conditions occur -1 -1-3 

wetslp maximum beach slope of wet cells before 
avalanching occurs 0.3 0.1-1 

Storm event 
On 31 October 2012, a storm event drove SE winds along the Adriatic Sea, causing the 
peak water level to rise to 1.16m above mean sea level at the site (measured at 23:30 
GMT). Significant wave height peaked at 2.43m at 3:00 GMT on 1 November 
(measured by a wave buoy in 10m water depth), with storm conditions subsiding within 
24 hours (Harley et al., 2015). This combination of surge and relatively large waves 
resulted in the event being classified as a 1-in-20 to 1-in-50 year event and caused 
significant damage as widespread erosion and inundation occurred (Harley et al., 
2015). 
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In this study, XBeach was run in one-dimensional mode 15,000 times (to ensure 
convergence of the parameter posterior distributions) at the selected profile using the 
‘Halloween’ storm dataset. A behavioural threshold of 0BSS >  has been selected for 
this study. Monte Carlo sampling of six free parameters (described in Table 1) was 
conducted in accordance with the GLUE method detailed above and these were 
chosen to be parameters deemed sensitive in the previous modelling study by Harley 
et al. (2015). The sampled ranges for each of the parameters were taken directly from 
the XBeach user’s manual (www.xbeach.org). 

Results 

Parameter optimisation 
The GLUE method provides a simple tool for choosing the most reliable of the trialled 
parameter sets, as the modeller can select the set with the highest likelihood value. In 
this study, the highest likelihood model realisation achieved a BSS (above mean sea 
level) of 0.906. In addition to this, it can be extremely useful to visualise the individual 
parameter posterior distributions by plotting a Probability Density Function (PDF) in 
order to find regions of the parameter space with high likelihood. Ideally the modeller 
should be able to see the full development and subsidence of the likelihood peak(s) 
within the sampled range and if not, the selected range should be re-evaluated to 
ensure that it is appropriate and incorporates all physically reasonable values. 

Figure 1 displays the posterior distributions of the six trialled XBeach parameters for 
the Italy data. Although most parameters in XBeach represent measurable physical 
parameters, the GLUE method treats these as free and varies these in a random way 
in order to provide insight into the way the model parameters compensate for epistemic 
errors. The data from the sensitive parameters (identified in the next section) in Figure 
1 show that the best results for this site (indicated by bins with high likelihood) are 
obtained when the parameters are set to values which minimise erosion in the model. 

Figure 1. Weighted histograms showing the parameter posterior distributions 
across the sampled parameter ranges. The red dashed lines represent the XBeach 

default values for each parameter. The values of the higher likelihood bins of 
gamma, gammax and facua compared to the default XBeach values suggests 
erosion in the model must be minimised to ensure good model skill for this 

observational data. 

http://www.xbeach.org/
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Both gamma and gammax show higher likelihood at lower values (compared to the 
default values of 0.55 and 2 respectively) indicating that the model performs better 
when wave breaking is induced earlier, increasing energy dissipation before the wave 
reaches the shoreline. Higher likelihood values occur when the parameter facua is 
higher than the default value of 0.1, leading to a greater proportion of onshore 
sediment transport. 

These results concur with the findings of (Harley et al., 2015), which reports a one-at-a-
time sensitivity analysis of the same event and found that XBeach significantly 
overestimated sub-aerial beach erosion with default parameter settings . Similarly, 
when calibrating the model, (Harley et al., 2015) found the ‘optimal’ parameter 
combination to include lower values of gamma and gammax and higher values of facua 
compared to XBeach defaults. 

Sensitivity testing 
The GLUE method extends upon the Generalised Sensitivity Analysis (GSA) method 
developed by Spear and Hornberger (1980), providing a systematic way with which to 
rank the relative sensitivity of the model to trailed parameters. Using the GSA method, 
the cumulative frequency distributions of both the behavioural ( 0BSS > ) and non-
behavioural ( 0BSS ≤ ) parameter values are plotted on the same axes. A large 
difference between these two distributions is indicative of model sensitivity to that 
parameter (as the ability of the model to exceed the behavioural threshold shows a 
clear dependence upon the parameter), whereas a small difference indicates 
insensitivity (Beven and Binley, 1992; Freer et al., 1996; Beven and Freer, 2001). In 
this way, the modeller can rank the sensitivity of each trailed parameter using a simple 
visual method. 

Figure 2 displays the insensitivity of XBeach to the parameters eps and wetslp when 
applied to the ‘Halloween’ storm dataset. The sensitivity of the model to the remaining 
parameters can be visually ranked from highest to lowest as facua, gamma, gammax 
and smax. This suggests that eps and wetslp could be discarded from future analyses 

Figure 2. Generalised Sensitivity Analysis (GSA) plots displaying the relative 
sensitivity of XBeach to the 6 trialled parameters at Profile ‘classe02’. A large 
difference between the behavioural (black) and non-behavioural (red dashed) 

curves indicates model sensitivity to a given parameter, while similarity indicates 
insensitivity. 
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(or as an iterative step in the GLUE process) in order to gain further detailed 
information about the other four parameter posterior distributions. 

Uncertainty analysis 
The GLUE method enables the modeller to assess the total model and parameter 
uncertainty, and compare performance between models. By combining the final bed 
elevations from all of the behavioural model realizations, upper and lower bounds of 
predicted bed elevation can be derived for each cross-shore position. In this way, 
uncertainty bounds can be plotted (as in Figure 3a) which represent errors stemming 
from model formulation, the selection of free parameter values and the collection of 
observational data (Brazier et al., 2000). 

To give another indication of uncertainty, in Figure 3b the modelled behavioural erosion 
volumes (change in volume above mean sea level) have been plotted against their 
likelihood values. This plot shows that within the behavioural model runs, there is a 
slight bias to under-predict erosion at the site. The 90% confidence interval shows that 
XBeach expected erosion of between -1 and 12 (m3/m), however the higher likelihood 
model realizations tend to estimate erosion very close to the observed value of 8.8 
m3/m. 

The width of the prediction bounds will be closely linked to the choice of likelihood 
measure and behavioural threshold (Beven and Binley, 2014). For instance if the 
modeller were to choose a BSS behavioural threshold of 0.2 as opposed to 0, fewer 
model runs would be deemed behavioural and therefore the bounds would be 
narrower. 

Rather than presenting an absolute uncertainty, the GLUE method is designed to 
produce uncertainty estimates that can be adapted to individual models and therefore 
allows the modeller to account for errors in the model structure and input data (Beven 
and Binley, 1992). For instance, it may be unreasonable to expect a one-dimensional 
model to perfectly predict the evolution of complex three-dimensional morphology and 
therefore the threshold must be lowered to a value deemed appropriate by the modeller 
so that enough behavioural runs are produced to allow study of the range of predicted 
final bed elevations. If the modeller is reasonable, explicit and consistent in the 
definition of the behavioural threshold, the GLUE method allows comparisons to be 
made about the certainty with which XBeach and other models make predictions at 

Figure 3. a) Uncertainty bounds (90% confidence interval) showing the range of 
behavioural model predictions with a threshold of BSS>0. b) Likelihood weighted 
distribution of the modelled behavioural erosion volumes (ΔV) above mean sea 

level. 

a) b) 
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different sites (i.e. the uncertainty of XBeach models with 0BSS >  can be compared at 
two different profiles in order to gauge the ability of the model as a predictor of storm 
erosion at both). 

If the uncertainty bounds do not contain the measured profile or an insufficient number 
of runs are regarded as behavioural, a clear indication is given to the modeller 
regarding the validity of the model structure (Beven and Binley, 2014). These results 
are not in any way disguised by an error model, allowing quick identification of 
problems in the model that need to be addressed in order for it to adequately simulate 
the system. 

Summary 
In order to apply deterministic coastal numerical models to the prediction of coastal 
change, it is important to appropriately optimise these whilst understanding the inherent 
limitations and uncertainties present in the model. Rather than providing an objective 
calibration method to search the parameter space for ‘optimal’ parameter values, the 
GLUE method provides a rigorous tool guiding the modeller through the calibration 
process whilst also identifying model deficiencies and providing uncertainty bounds for 
model predictions. This paper provides an example of the GLUE methodology used in 
a coastal engineering application. The method was applied to the model XBeach with a 
simple likelihood measure based on the BSS. Sensitive parameters and higher 
likelihood regions of the parameter space were identified, allowing insight into the 
compensation required in the model to limit the influence of epistemic errors for this 
dataset. Uncertainty bounds were provided using a behavioural threshold of 0BSS > , 
showing that the model provided good predictions of observed erosion above mean 
sea level. 

The performance of GLUE when applied to a coastal numerical model suggests that 
future work could extend the method to multiple sites in order to examine the 
universality of sensitive parameters and ‘optimal’ parameter values in XBeach. 
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